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Introduction to Orthogonal Functions and Eigenfunction Expansions 

Goal of these notes 

Function sets can form vector spaces and the notions of vectors and matrix operations – 
orthogonality, basis sets, eigenvalues, can be carried over into analysis of functions that are 
important in engineering applications.  (In dealing with functions we have eigenfunctions in place 
of eigenvectors.)  These notes link the previous notes on vector spaces to the application to 
functions. 

The eigenfunctions with which we will be dealing are solutions to differential equations.  
Differential equations, both ordinary and partial differential equations, are an important part of 
engineering analysis and play a major role in engineering analysis courses.  We will begin with a 
brief review of ordinary differential equations.  We will then discuss power series solutions to 
differential equations and apply this technique to Bessel’s differential equation.  The series 
solutions to this equation, known as Bessel functions, usually occur in cylindrical geometries in 
the solution to the same problems that produce sines and cosines in rectangular geometries. 

We will see that Bessel functions, like sines and cosines, form a complete set so that any function 
can be represented as an infinite series of these functions.  We will discuss the Sturm-Loiuville 
equation, which is a general approach to eigenfunction expansions, and show that sines, cosines, 
and Bessel functions are special examples of functions that satisfy the Sturm-Liouville equation. 

The Bessel functions are just one example of special functions that arise as solutions to ordinary 
differential equations.  Although these special functions are less well known than sines and 
cosines, the idea that these special functions behave in a similar general manner to sines and 
cosines in the solution of engineering analysis problems, is a useful concept in applying these 
functions when the problem you are solving requires their use. 

These notes begin by reviewing some concepts of differential equations before discussing power 
series solutions and Frobenius method for power series solutions of differential equations.  We 
will then discuss the solution of Bessel’s equation as an example of Frobenius method.  Finally, 
we will discuss the Sturm-Liouville problem and a general approach to special functions that form 
complete sets. 

What is a differential equation? 

A differential equation is an equation, which contains a derivative.  The simplest kind of a 
differential equation is shown below: 

 00)( xxatyywithxf
dx

dy
  [1] 

In general, differential equations have an infinite number of solutions.  In order to obtain a unique 
solution one or more initial conditions (or boundary conditions) must be specified.  In the above 
example, the statement that y = y0 at x = x0 is an initial condition.  (The difference between initial 
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and boundary conditions, which is really one of naming, is discussed below.)  The differential 
equation in [1] can be “solved” as a definite integral. 

 
x

x

dxxfyy

0

)(- 0  [2] 

The definite integral can be either found from a table of integrals or solved numerically, 
depending on f(x).  The initial (or boundary) condition (y = y0 at x = x0) enters the solution directly.  
Changes in the values of y0 or x0 affect the ultimate solution for y. 

A simple change – making the right hand side a function of x and y, f(x,y), instead of a function of 
x alone – gives a much more complicated problem. 

 00),( xxatyywithyxf
dx

dy
  [3] 

We can formally write the solution to this equation just as we wrote equation [2] for the solution to 
equation [1]. 
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Here the definite integral can no longer be evaluated simply.  Thus, alternative approaches are 
needed.  Equation [4] is used in the derivation of some numerical algorithms.  The (unknown) 
exact value of f(x,y) is replaced by an interpolation polynomial which is a function of x only. 

In the theory of differential equations, several approaches are used to provide analytical solutions 
to the differential equations.  Regardless of the approach used, one can always check to see a 
proposed solution is correct by substituting a proposed solution into the original differential 
equation and determining if the solution satisfies the initial or boundary conditions. 

Ordinary differential equations involve functions, which have only one independent variable.  
Thus, they contain only ordinary derivatives.  Partial differential equations involve functions 
with more than one independent variable.  Thus, they contain partial derivatives.  The 
abbreviations ODE and PDE are used for ordinary and partial differential equations, respectively. 

In an ordinary differential equation, we are usually trying to solve for a function, y(x), where the 
equation involves derivatives of y with respect to x.  We call y the dependent variable and x the 
independent variable. 

The order of the differential equation is the order of the highest derivative in the equation.  
Equations [1] and [3] are first-order differential equations.  A differential equation with first, second 
and third order derivatives only would be a third order differential equation. 

In a linear differential equation, the terms involving the dependent variable and its derivatives 
are all linear terms.  The independent variable may have nonlinear terms.  Thus x3d2y/dx2 + y = 0 
is a linear, second-order differential equation.  ydy/dx + sin(y) = 0 is a nonlinear first-order 
differential equation.  (Either term in this equation – ydy/dx or sin(y) would make the differential 
equation nonlinear.) 

Differential equations need to be accompanied by initial or boundary conditions.  An nth order 
differential equation must have n initial (or boundary) conditions in order to have a unique 
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solution.  Although initial and boundary conditions both mean the same thing, the term “initial 
conditions” is usually used when all the conditions are specified at one initial point.  The term 
“boundary conditions” is used when the conditions are specified at two different values of the 
independent variable.  For example, in a second order differential equation for y(x), the 
specification that y(0) = a and y’(0) = b, would be called two initial conditions.  The specification 
that y(0) = c and y(L) = d, would be called boundary conditions.  The initial or boundary conditions 
can involve a value of the variable itself, lower-order derivatives of the variable, or equations 
containing both values of the dependent variable and its lower-order derivatives. 

Some simple ordinary differential equations 

From previous courses, you should be familiar with the following differential equations and their 
solutions.  If you are not sure about the solutions, just substitute them into the original differential 
equation. 

 
)(

000
0ttk

eyyttatyywithky
dt

dy 
  [5] 

 )cos()sin(2

2

2

kxBkxAyyk
dx

yd
  [6] 
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2
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 [7] 

In equations [6] and [7] the constants A and B (or A’ and B’) are determined by the initial or 
boundary conditions.  Note that we have used t as the independent variable in equation [5] and x 
as the independent variable in equations [6] and [7]. 

There are four possible functions that can be a solution to equation [6]: sin(kx), cos(kx), eikx, and 
e-ikx, where i2 = -1.  Similarly, there are four possible functions that can be a solution to equation 
[7]: sinh(kx), cosh(kx), ekx, and e-kx.  In each of these cases the four possible solutions are not 
linearly independent.1  The minimum number of functions with which all solutions to the 
differential equation can be expressed is called a basis set for the solutions.  The solutions shown 
above for equations [6] and [7] are basis sets for the solutions to those equations. 

One final solution that is useful is the solution to general linear first-order differential equation.  
This equation can be written as follows. 

 )()( xgyxf
dx

dy
  [8] 

This equation has the following solution, where the constant, C, is determined from the initial 
condition. 

                                                           
1 We have the following equations among these various functions: 

2
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xx ee
x


     

2
)cosh(

xx ee
x


     

2
)sin(

ixix ee
x


    

2
)cos(

ixix ee
x


   



Introduction to orthogonal eigenfunction expansions October 10, 2017 Page 4 

 

 














  


dxexgCey
dxxfdxxf )()(

)(  [9] 

Power series solutions of ordinary differential equations 

The solution to equation [6] is composed of a sine and a cosine term.  If we consider the power 
series for each of these, we see that the solution is equivalent to the following power series. 
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We are interested in seeing if we can obtain such a solution directly from the differential equation.  
A proof beyond the level of these notes can be used to show that the following differential 

equation has power series solutions, y(x) in a region, R, 

around x = a, provided that p(x), q(x) and r(x) can be expressed in a power series in some region 
about x = a.  Functions that can be represented as a power series are called analytic functions.2 

The power series solution of )()()(
2

2

xryxq
dx

dy
xp

dx

yd
 requires that the three functions 

p(x), q(x) and r(x) can be represented as power series.  Then we assume a solution of the 
following form. 
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Here the an are unknown coefficients.  We can differentiate this series twice to obtain. 
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Substituting equations [11] and [12] into our original differential equation gives the following 
result. 
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We then set the coefficients of each power of x on both sides of the equation to be equal to each 
other.  This gives an equation that we can used to solve for the unknown an coefficients in terms 
of one or more coefficients like a0 and a1, which are used to determine the initial conditions.  This 

                                                           
2 See the brief discussion of power series in Appendix A for more basic information on power 
series. 
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is best illustrated by using equation [6], , as an example.  Here we have p(x) = 0, 

q(x) = k2, and r(x) = 0, so for this example, equation [13] becomes. 

 0)-()-()1(
0

0

2

0

2

0  










n

n

n

n

n

n xxakxxann  [14] 

The only way to assure that equation [14] is satisfied is to have the coefficient of each power of (x 
– x0) vanish.  We get the power series solution by setting the coefficients of each power of (x – x0) 
equal to zero.  This task is simplified if we collect all the terms in equation [14] into a single sum.  
To do this, we note that the first two terms (n = 0 and n = 1) in the first sum of equation [14] are 
zero.  We can thus start the sum at n = 2.  Next, we can change the index on this sum from n to a 
new index, m = n – 2.  Finally, we can combine the two sums, even though they have different 
summation indices, because these indices are dummy indices and the both limits on each 
summation are the same. 

These steps give the following result. 
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The last sum in equation [15] equals zero only if the coefficient of (x – x0)n vanishes for each n.  
This gives the following relationship among the unknown coefficients. 
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This gives us an equation for an+2 in terms of the coefficient previously found for an.  We cannot 
use this equation to find a0 or a1, so we assume that these coefficients will be determined by the 
initial conditions.  However, once we know a0, we see that we can find all the even numbered 
coefficients as follows 
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Continuing in this fashion we see that the general pattern for a subscript whose coefficient is an 
even number is the following. 
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We can verify this general result by obtaining an equation for an+2.  This is done by replacing n in 

equation by n+2 to give
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[18] into equation [16] to see if we get the correct result for the ratio an+2/an.3 
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We see that the ratio an+2/an that we computed using our general equation for an from equation 
[18] is the same as the value for this ratio that we started with in equation [16].  We thus conclude 
that equation [18] gives us a correct solution for an when n is even.  We can handle the 
recurrence for an, when n is an odd number in the same way that we just did for even n.  We start 
by finding a3 and a5 in terms of a1. 
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We see that this recurrence will lead to a general equation of the following form. 
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As before, we can check this general relationship by obtaining an expression for an+2 and showing 
that the ratio an+2/an as computed from equation [21] satisfies equation [16].  This check is left as 
an exercise for the reader. 

Now that we have expressions for an in terms of the initial values a0 and a1 we can substitute 
these expressions (in equations [18] and [21]) into our proposed general power series solution for 
our differential equation from equation [11]. 

                                                           
3 If you are not familiar with the cancellation of factorials, see the discussion in Appendix B. 
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Thus the series multiplied by a0 and a1 are seen to be the series for cos[k(x – x0)] and sin[k(x – 

x0)], respectively.  This is the expected solution of the differential equation 02

2

2

 yk
dx

yd
.  

Although this differential equation has a solution in terms of sines and cosines, the basic power 
series methods can be used for equations that do not have a conventional solution. 

Summary of power series solutions of ordinary differential equations 

We can solve a differential equation like , using the power 

series method, provided that p(x), q(x) and r(x) are analytic at a point x0 where we want the 
solution.  Such a solution is obtained in the following steps. 

• Write the solution for y(x) as a power series in unknown coefficients an as shown in 
equation [11]. 

• Differentiate the power series two times to get the derivatives required in the differential 
equation; see equation [12] for the results of this differentiation. 

• Obtain power series expansions for p(x), q(x) and r(x), if these are not constants or 
simply polynomials. 

• Substitute the power series for y(x), y’(x), y”(x), p(x), q(x) and r(x) into the differential 
equation for the problem. 

• Rewrite the resulting equation to group terms with common powers of x – x0. 

• Set the coefficients of each power of x – x0 equal to zero.  This should produce an 
equation that relates neighboring values of the unknown coefficients an. 

• Use the equation found in the previous step to relate coefficients with higher subscripts to 
those with lower subscripts.  The first few coefficients, e.g., a0, a1, etc., will not be known.  
(These will be determined by the initial conditions on the differential equation.) 

• Examine the equation relating the coefficients and try to obtain a general equation for 
each an in terms of the unknown coefficients a0, a1, etc. 

• Substitute the general expression for an into the original power series for y(x).  This is the 
final power series solution. 

Frobenius method for solution of ordinary differential equations 

The Frobenius method is used to solve the following differential equation. 
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In this equation b(x) and c(x) are analytic at x = 0.  Note that the conventional power series 
method cannot be used for this equation because the coefficients of dy/dx and y are not analytic 
at x = 0. 

In the Frobenius method the solution is written as follows. 

 










00

)(
n

rn

n

n

n

n

r xaxaxxy  [24] 

Here the an are unknown coefficients and the value of r is also unknown.  The value of r is 

determined during the solution procedure so that a0  0.  We can differentiate the series for y(x) in 
equation [24] two times to obtain. 
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We assume that b(x) and c(x) are constants, simple polynomials or series expressions that have 
the following general forms. 
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We can substitute equations [24], [25], and [26], into equation [23] and multiply the result by x2 to 
obtain the following equation. 
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We can combine the x2 and x terms outside the sums with the x terms inside the sums as follows. 
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We can then write out the first few terms in each series or product of series to give 
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As in the conventional power series solution, we require the coefficient of each term in the power 
series to vanish to satisfy equation [28] or [29].  Starting with the lowest power of x, xr, we require 
that the following coefficient be zero. 
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   0)1( 000  acrbrr  [30] 

In this case we want to keep a0  0, thus we require that 

 0)1( 00  crbrr  [31] 

This yields a quadratic equation in r which is called the indicial equation.  We find two possible 
values of r from the conventional solution of the quadratic equation. 

 
 

2

411 0

2

00 cbb
r


  [32] 

The original solution in equation [24] is a basis for all solutions if the two values of r found from 
equation [23] are different and their difference is not an integer.  In that case we have two 
solutions which can form a basis for all solutions to equation [23].  These are 

 









0

2

0

1
21 )()(

n

n

n

r

n

n

n

r
xAxxyandxaxxy  [33] 

The coefficients for the two solutions, an for y1(x) and An for y2(x), are different.  These coefficients 
are found in the same way that the coefficients were found in the usual power series equation, 
once the values of r are determined.  If there is a double root for r or if the two values of r differ by 
an integer, it is necessary to have a second solution that has a different form.  For a double root, 
we have the two following solutions. 

 









1

12

0

1 )ln()()()(
n

n

n

n

n

n

r xAxxyxyandxaxxy  [34] 

If the two roots, r1 and r2 differ by an integer, the two possible solutions are written as follows. 

 









0

12

0

1
21 )ln()()()(

n

n

n

r

n

n

n

r
xAxxxkyxyandxaxxy  [35] 

In the last expression, the roots are defined such that r1 > r2; the value of k may be zero in this 
case.  Note that the an coefficients and the An coefficients are different; also for the double root, 
the summation for y2(x) starts at n = 1 instead of n = 0. 

In the next section, we examine the solution of Bessel’s equation using the Frobenius method.  
This serves both as the derivation of the series expansions for the various Bessel functions and 
as an illustration of the Frobenius method. 

Application of Frobenius Method to Bessel’s equation 

Bessel’s equation arises when various engineering phenomena are modeled in cylindrical 

coordinates.  This equation for y(x) with  as a known parameter in the equation has the following 
form. 
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 0
)(1)(

2

22

2

2




 y
x

x

dx

xdy

xdx

xyd 
 [36] 

We see that this is the general form given in equation [23] with b(x) = 1 and c(x) = x2 – 2.  Recall 
the basic solution format for Frobenius method from equation [24], copied below. 

 
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





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)(
n
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n

n

n

n

r xaxaxxy  [24] 

The derivatives of this solution were given in equation [25], also copied below. 

 



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dx
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andxarn
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 [25] 

If we multiply equation [36] by x2 and substitute equations [24] and [25] we obtain the following 
result. 

   0)()1)((
0

22
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

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n
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n
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n xaxxarnxarnrn   [37] 

Except for the final sum that is multiplied by x2, we can combine all three summation operators 
into a single sum. 

   0)()1)((
0

2

0

2  











n

rn

n

n

rn

n xaxarnrnrn   [38] 

We can simplify the coefficient in the first summation. 

 
22222 )()()()()()1)((   rnrnrnrnrnrnrn  [39] 

We can define a new index for the second sum, m = n+2.  This allows us to write the second sum 
as follows. 
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We can use equations [39] and [40] to rewrite equation [38] as follows. 
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

 [41] 
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The indicial equation is the equation that sets the coefficient of a0 equal to zero.  For Bessel’s 

equation, the indicial equation is r2 – 2 = 0, whose solution is r = .  The first Frobenius method 

solution will be the same regardless of the value of .  However, if this is a double root and 

if  is an integer, the two roots of the indicial equation will differ by an integer.  The first solution 
will be the same in all three cases, so we will obtain this solution and defer the consideration of 

the second solution.  We will take the root r = , that gives a positive value for r.  We will assume 

that  is positive.  Substituting r = , into the power series solution in equation [41] gives 

 
      0)(1

2

2

221

1

22
 











n

n

nn xaanxa  
 [42] 

Each coefficient in this equation (for each power of x) must equal zero for series sum on the left-

hand side of equation [42] to be zero.  The coefficient of the x1+ term will not vanish unless a1 = 
0.  Thus, we conclude that a1 is zero.  The remaining powers of x in equation [42] have a 
common equation for the coefficient.  When we set this equation to zero, we obtain the following 
result. 

       022)( 22

222

2

22   nnnnnn aannaannaan   [43] 

We can solve this equation to obtain a recurrence relationship that gives an in terms of an-2. 

 
)2(

2




 

nn

a
a n

n  [44] 

According to equation [44], if an = 0, then an+2 = 0.  Since we have shown that a1 must be zero, 
we conclude that all values of an with an odd subscript must be zero.  Since the further 
application of equation [44] will be for even subscripts only, we change the index from n to m 
where n = 2m.  This allows us to rewrite equation [44] as follows. 
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2222

2
 
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


 
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mm

a
a mm

m  [45] 

We will take a0 as an unknown coefficient that is determined by the initial conditions on the 
differential equation.  We can then use equation [45] to write the first few (even-numbered) 
coefficients in terms of a0.  Setting m = 1 in equation [45] gives us a2. 

 
)1(2)1)(1(2 2

0

2

2)1(2

2
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
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



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a  [46] 

Next we set m = 2 in equation [45] to obtain a4 in terms of a2, and then use equation [46] to get a4 
in terms of a0. 
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
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
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



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a
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a  [47] 
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Next, we use m = 3 in equation [45] to compute a6 by which point we should be able to see the 
pattern in the a2m coefficients. 
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








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a
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a  [48] 

We see a pattern emerging that we can summarize in the following general equation for the 
coefficients in the power series solution. 

 
)1)(2()1)((!2

)1(
2

0

2
 




mmm

a
a

m

m

m  [49] 

This is the general relationship for the coefficients in the first solution.  We now have to look at 

individual cases of noninteger , integer , and  = 0. 

First Frobenius method solution for integer  – We first consider the case of integer , for 

which the parameter, , is conventionally represented as n.  (The symbol  is reserved for cases 

where this parameter is not an integer.)  Setting n =  for cases where n is an integer gives the 
following version of equation [49]. 

 
)1)(2()1)((!2

)1(
2

0

2
nnnmnmm

a
a

m

m

m






 [50] 

Since a0 is an unknown constant, which has different values for different problems as determined 
by the boundary conditions for the problem, we can redefine a0 as follows.  (This is a convention 
used to obtain an equation that is used for computation and tabulation of Bessel functions.) 

 
!2

1
0

n
Aa

n
  [49] 

Now, A is the constant that is selected to fit the boundary conditions.  With this substitution, we 
can write equation [48] as follows. 
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nmm
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m

nm
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m










 
 [50] 

We can substitute this expression for a2m into the power series equation [24] proposed for the 

solution with the value of r in that equation set to the solution of the indicial equation, r = , using 

n in place of  for integer values of . 

  
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
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x
Axxaxxaxxy  [51] 

The Bessel function of the first kind of integer order n, Jn(x) is defined by this equation, with 
the arbitrary constant omitted.  (This is the same practice as ignoring the multiplicative constant in 
the sine and cosine solutions to differential equations and simply tabulating the sine and cosine.)  
Thus, we write 
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nmm

x
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Plots of these Bessel functions for some low values of n are shown below.  Note that J0(0) = 1 
while Jn(0) = 0 for all n > 0. 

 

First Frobenius method solution for noninteger n – The only change necessary when we 

consider noninteger , is that we do not have the factorials used above in the case of integer  = 
n.  Instead, we use the gamma function in the definition of a0.  (See appendix C for background 
on the gamma function and its ability to generalize factorial relationships to noninteger values.)  

That is we replace equation [49] by the following equation for noninteger . 
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1
0
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
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Aa  [53] 

Substituting this expression for a0 into equation [49], and using equation [C-3] from Appendix C 
on gamma functions gives the following result. 
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 [54] 

We substitute this equation for a2m (without the arbitrary constant, A) into the general power 
series solution from equation [24] to define the Bessel function of the first kind of (noninteger) 

order , J(x). 

Bessel Functions of the First Kind for Integer Orders
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
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Note that this definition for noninteger  is the same as equation [52] for integer  = n, since 

equation [C-6] shows that (m + n)! = (m + n + 1). 

Second Frobenius method solution – Now that we have the first solution for integer and 

noninteger , including  = 0, we have to find another linearly independent solution to Bessel’s 
equation to form a basis for all possible solutions to this equation.  This requires us to consider 

each case separately.  The simplest case is when  is not an integer.  Here the values of J(x) 

and J-(x) are linearly independent and we can write a solution to Bessel’s equation as follows. 

 )()()( xBJxAJxy    [56] 

Here A and B are arbitrary constants determined by the initial conditions on the original 

differential equation.  The values of J-(x) are found from equation [55]. 

When  is an integer (with the usual notation that integer  = n), we can use equation [52] to 
show that the Bessel functions for order n and order –n are linearly dependent.  These two orders 
of Bessel functions are simply related as follows. 

 )()1()( xJxJ n

n

n   [57] 

Second Frobenius method solution for integer  = n – To find a second solution for integer , 

we have to separately consider the special case where  = n = 0.  In this case, where the indicial 
equation had a double root, the second solution is shown in equation [34].  To get the second 
solution for Bessel’s equation with n = 0, we modify equation [34] by setting the first solution to 
J0(x) and the value of r in equation [34] to the value of the double root, r = 0.  This gives the 
equation shown below for the second solution 
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02 )ln()()(
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m

mxAxxJxy  [58] 

For the more general case of integer  = n  0, the second solution is given by equation [35].  

Since the two roots of the indicial equation are r =  = n for integer , and we used r = +n in the 
original solution for Jn(x), we have to use the second root, r = -n here.  Using this value for r and 
Jn(x) for the original solution, y1(x), equation [35] becomes. 

 









 
00

2 )ln()()ln()()(
m

nm

mn

m

m

m

n
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Equations [58] and [59] use m as the summation index in place of n, which was used in equations 
[34] and [35].  This was done to avoid confusion with the use of n to represent the order of the 
Bessel function.  Since the summation index is a dummy index, we can use any symbol we want 
for this index. 

We can do the initial part of the analysis for general integer  = n, where n may or may not be 

zero.  To do this we will write Bessel’s equation [36] as follows, substituting n for . 
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   0
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2
2  ynx

dx

xdy
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xyd
x  [60] 

We will also use equation [59] as the second solution.  When we do this, we must remember to 
set k = 1 and to set the lower limit of the summation equal to 1 to make the equation for general n 
in [59] correspond to equation [58] for n = 0.  (These two changes, plus setting n = 0, will convert 
the solution in [59] to the special case of n = 0 in equation [58].) 

Taking the first derivative of equation [59] gives 
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Substituting 1/x for dln(x)/dx and taking the second derivative gives. 
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Substituting equations [59], [61], and [62] into equation [60] gives the following result. 
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 [63] 

We can rearrange this equation by multiplying each term in braces by the factors outside the 
braces, substituting 1/x for dln(x)/dx, and collecting all the terms multiplied by k ln(x). 
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The terms in the top row all vanish.  The last two terms in this row obviously cancel.  The terms 
multiplied by k ln(x) are just Bessel’s equation (see equation [60]) with Jn(x) as the dependent 
variable.  However, Jn(x) is a solution to Bessel’s equation.  Thus equation [60] tells us that the 
terms multiplying k ln(x) sum to zero. 

We can consider the remaining terms in equation [64] as follows.  First, we use equation [52] for 
Jn to evaluate the derivative term. 
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We can rewrite the summation terms in equation [64] as follows. 
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We can now substitute equations [65] and [66] into equation [64], after setting the first row of [64] 
equal to zero. 
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Second Frobenius method solution for n = 0 – At this point we want to return to the separate 
consideration of n = 0.  Recall that we had to set n = 0 and k = 1 in this case.  We also had to 
increase the lower limit on the summation of the Amxm terms from zero to one.  Making these 
changes in equation [67] gives the following result for n = 0. 
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We can combine the last two sums if we temporarily replace m by j = m + 2 in the second sum.  
(Once we get the correct form for this sum, we can replace j by m and combine the two sums.  To 
do this we explicitly write the terms for m = 1 and m = 2 in the first sum.) 
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We can use equation [69] to replace the last two sums in equation [68].  In addition, we see that 
the 2m in the numerator of the first sum in equation [68] makes the first term in that sum zero.  
Thus, we can change the lower limit of that sum from m = 0 to m = 1.  Making these changes 
allows us to rewrite equation [68] as follows. 

 
 

  04
!2

)4()1(

3

2

22

21

1
22

2













 m

m

mm

m
m

mm

xAAmxAxA
m

xm
 [70] 



Introduction to orthogonal eigenfunction expansions October 10, 2017 Page 17 

 

In the first sum, we can combine the 4 in the numerator with the 22m in the denominator and we 
can also write m/(m!)2 as 1/[m!(m-1)!].  This gives the following change to equation [70]. 
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Since equation [71] is a power series whose sum is equal to zero, the coefficient of every power 
in this series must vanish to for the sum to equal zero for any value of x.  We see that the lowest 
power of x occurs in the term A1x.  We must have A1 = 0 for the x coefficient to vanish. 

We next consider the x2 term.  For the coefficient of this term to vanish we must satisfy the 
following equation. 
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Since the first sum in equation [71], which comes from the first derivative of Jn(x), has only even 
powers of x, the coefficients for odd powers of x are given by the second sum only.  Setting the 
coefficient of odd powers of x equal to zero gives the following result. 
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Since we have previously shown that A1 = 0, equation [73] tells us that A3 = 0.  In fact we can 
apply it sequentially to all values of Am with an odd subscript to show that all values of Am for 
which m is odd are zero.  This leaves us with only even values of m to consider.  For convenience 
we can rewrite the second sum in equation [71] to have only even powers.  To do this we 
temporarily define the index k = m/2 and replace m by 2k in the second sum in equation [71].  
Before doing this, we set A2 = 0 and start the sum at m = 4 since the m = 3 term is zero. 
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From equation [74], we can see that the coefficients of even powers, x2m, for m > 1, will vanish if 
the following equation is satisfied. 
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This allows us to define new coefficients in terms of old ones by the following equation. 
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For m = 2, we can compute A4 in terms of A2 = ¼. 
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For m = 3, we can compute A6 in terms of A4 and use the result that A4 = -3/128 to get a value for 
A6. 

 

284,13

11

284,13

9

284,13

2

608,4

3

912,6

1

36

128
3

)2)(6)(36)(16(

1

)32()!13)(!3()32(2

)1(
2

4

22)3(2

3

6



















A
A

 [78] 

The general form for A2m is not easy to see.  We can see that the recursion equation [76] for A2m 
contains one term from the series sum for the first derivative of J0 and a second term which 
contains the previous value of A2m.  Because this continues indefinitely, general expression will 
look like the following expression that we found for A6. 
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 [79] 

Equation [79] shows the general form that the J0
’ term appears repeatedly with a series of factors.  

Although we will not attempt to derive the general equation below, equation [79] tells us that the 
form of the equation proposed in [80] for A2m is reasonable. 
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We can show that this result satisfies the difference equation in [76] as follows.  First, we rewrite 
equation [80], replacing m by m – 1. 
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We then substitute equation [81] into equation [76] and after some manipulation we see that we 
obtain the same result for A2m given by equation [80]. 
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 [82] 

Since the last expression in equation [82] is the general expression proposed for A2m in equation 
[80], we conclude that equation [80] is a correct solution to the recusrion equation that we derived 
for A2m in terms of A2m-2 in equation [76]. 

If we substitute this equation [80] for A2m into the original equation for our second solution in [58], 
we get the result that 
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Although this solution provides a second linearly independent solution to Bessel’s equation for  = 
0, it is conventional to tabulate the function Y0(x) shown below as the second solution.  In this 

equation  is called the Euler constant.  It has a value of 0.577215664901532860606152…, and 

represents the limit of the following sum as x approaches infinity: 1 + ½ + 1/3 + ¼ +∙∙∙+1/x – ln x. 
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Second Frobenius method solution for integer   0 – Having completed the second solution 
for J0, we can return to the general case of finding the second solution for Jn, where n is nonzero.  

We return to equation [67], the last equation in our general development for any integer  = n, 
and rewrite the final two sums in that equation as follows. 
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 [85] 

Substituting this equation into equation [67] gives the following result. 
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The minimum power of x in this equation is x1-n.  The coefficient of this term is (1 – 2n) A1.  Since 
n is an integer, this coefficient will only vanish if A1 = 0. 

Because the first term has x raised to the 2m+n power while the other terms have x raised to the 
j–n power, the two different summations will have common powers of x only when 2m + n = j – n.  
That is when j = 2m + 2n.  Since the minimum value of m is zero, the first sum will only come into 

play when j  2n.  For j < 2n, then, the coefficients of the x terms will vanish only if the coefficients 
of xj-n in the second summation are zero.  This requires 
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Since A1 = 0, this equation tells us that all values of Aj, with an odd number for j, with j < 2n are 
zero.  For even j < 2n, the coefficients are be expressed in terms of A0, which will remain an 
unknown.  For j = 2, 4, and 6, we have the following results from equation [87]. 
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 [88] 

We can continue in this fashion until we compute A2n-2; the next value of j will be j = 2n.  At this 
point, the exponent of xj-n in the second sum of equation [86] becomes equal to 2n – n = n.  This 
is the same power of x that occurs at the lower limit of m = 0 in the first sum of equation [86].  So 

for j  n, we have to consider both sums in equation [86].  The following equation, obtained by 
setting m = 0 in the first sum and j = 2n in the second sum, is required to set the coefficient of xn 
in equation [86] equal to zero. 
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We can solve this equation for k, the coefficient of the Jn(x)ln(x) term in the proposed second 
solution 
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We will develop an equation for k later in the derivation.  Note that the value of k may be zero in 
other solutions by Frobenius method where the roots of the indicial equation differ by an integer. 

The remaining powers of x in the series have contributions from both sums.  The power of x in the 
two sums will be the same if j = 2m + 2n.  (This covers only even powers of x, which are the only 
powers left in the series whose coefficients are not already zero.)  Setting j = 2m + 2n in the final 
sum of equation [86] gives the following equation to make the coefficients x2m+n vanish. 
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If we set m = 0 in this equation we recover equation [89] which we used to solve for k.  Thus, this 

equation only applies for m  1.  We can solve this equation for A2m+2n as follows 
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When we apply this equation for m = 1, using the result that k = k A0, we obtain A2n+2, 
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We can continue to apply equation [94] to get additional values of Am.  The general result for this 
coefficient is tedious to obtain and we will skip the steps that lead to the following result. 
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 [94] 

Although this solution provides a second linearly independent solution to Bessel’s equation for  = 

n  0, it is conventional to tabulate the function Yn(x) shown below as the second solution.  The 
definition of this second solution is similar to the one used in obtaining equation [84] for Y0(x). 
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If we set n = 0 in equation [95], we will obtain equation [84] for Y0(x) if the final sum in equation 
[95] is omitted when n = 0. 

There is one final step that is taken to obtain consistency between integer-order and noninteger-

order Bessel functions.  Although J and J- are linearly independent solutions for noninteger , 
we define an alternative second solution for noninteger n by the following equation. 
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xJxJ
xY 
  [96] 

In the limit as  approaches an integer, the numerator and denominator of equation [96] both 
approach zero.  (Recall equation [57] for Bessel functions of integer order: J-n(x) = (-1)nJn(x); 

since cos n = (-1)n, the numerator approaches zero as  approaches an integer.)  If we apply 

L’Hopital’s rule to equation [96] as  approaches integer n, we can show that the result we get is 
the same as that given for Yn(x) in equation [95]. 
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The basic result of this section on Bessel functions then is that the solution to Bessel’s equation 

[36] is y = C1J(x) + C2Y(x) for both integer and noninteger .  Here C1 and C2 are constants that 
are determined by the boundary conditions on the differential equation.  In the same way that we 
recognize that y = C1sin(kx) + C2cos(kx) is the solution to d2y/dx2 + k2y = 0, we can now 

recognize that y = C1J(x) + C2Y(x) is the solution to  x2d2y/dx2 + xdy/dx + (x2 - 2)y = 0.  Of 
course, Bessel function tables are not as common as tables of sines and cosines and you 
probably do not have a Bessel function button on your calculator.  However, on an Excel 

spreadsheet you can get Bessel functions J(x), for both integer and noninteger , by the function 

besselj(x,).  Similarly, you can get Y(x), for both integer and noninteger , by the function 

bessely(x,).  These functions were used to prepare the plots of Jn(x) shown above the the plots 
of Yn(x) shown below. 

This plot shows that the values of Yn(x) approach minus infinity as x approaches zero due to the 
ln(x) term in Yn(x).  Because the common application of Bessel functions is to problems with 

radial geometries, we usually have to take C2 = 0 in the general solution, y = C1J(x) + C2Y(x), to 
have a solution that remains finite at x = 0. 

 

Summary of Frobenius method 

Frobenius method is used to determine series solutions to differential equations with the following 
form: x2d2y/dx2 + xb(x)dy/dx + c(x)y = 0.  In these notes, we have applied this method to the 
solution of Bessel’s equation. 

• The general form of the Frobenius method solution is the infinite series y(x) = xr(a0 + a1x 
+ a2x2 + ….) 
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• The general solution is differentiated and substituted into the original differential equation.  
Setting the coefficients of each power of xn equal to zero gives equations that can be 
solved for r and the ai coefficients. 

• Setting the coefficient of xr = 0 gives a quadratic equation for r known as the indicial 
equation. 

• There are three possible cases for the two roots of the indicial equation: (1) the two roots 
are the same; (2) the two roots differ by an integer (other than zero); (3) the two roots are 
different and their difference is not an integer. 

• In all three cases, the first solution is y1(x) = xr(a0 + a1x + a2x2 + ….), where r is one root 
to the indicial equation.  This must be taken as the greater of the two roots if the roots 
differ by an integer. 

• The values of the ai coefficients in the solution are determined in the same way as in the 
general power series solution; the coefficients of each power of xn in the solution must be 
zero. 

• If the two roots of the indicial equation are different, and the difference is not an integer, 
the second solution is is y2(x) = xR(A0 + A1x + A2x2 + ….), where R is the second root to 
the indicial equation. 

• If the two roots are the same, the second solution is is y2(x) = y1(x) ln(x) + (A1x + A2x2 + 
A3x3 + ….). 

• If the two roots differ by an integer, the second solution is is y2(x) = k y1(x) ln(x) + (A0 + 
A1x + A2x2 + A3x3 + ….), where k may be zero. 

• The coefficients Ai (and the value of k) are found by making the coefficients of all powers 
of x equal to zero. 

You should understand how Frobenius method works, and be able to apply this method.  
However, it does not play a role in the solution of most practical engineering problems. 

The Sturm-Liouville problem 

The Sturm-Liouville problem forms the basis for several problems in engineering analysis.  It 
provides a link among different functions including Bessel functions, sines and cosines, and other 
special functions.  Sets of these functions, which are solutions to the Sturm-Liouville problem, 
have a common ability to represent any function over a certain region in space. 

The Sturm-Liouville problem is defined by the following differential equation over a region a  x  
b. 

   0)()()( 







yxpxq

dx

dy
xr

dx

d
  [97] 

with the following boundary conditions at x = a and x = b.  In these boundary conditions, at least 
one of the two constants k1 and k2 is not zero.  Similarly, at least one of the two constants ℓ1 and 
ℓ2 is not zero. 
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The functions r(x), dr(x)/dr, q(x) and p(x) must be continuous in the region a  x  b and we must 
have p(x) > 0.  The Sturm-Liouville problem is one of a general class of problems involving linear 
operators.  We can define a general linear operator, L, which may be a derivative operator such 
as d/dx or d2/dx2, or a combination of operations such as (d2/dx2 + 1).  If our linear operator, L, 

operates on a function and returns the same function times a constant, , we call the function an 

eigenfunction of the operator and the constant, , an eigenvalue.  

 If Lf(x) = f(x), then f(x) is an eigenfunction of L and  is an eigenvalue [99] 

Note the similarity to the matrix eigenvalue problem, Ax =x.  For example, if L is the simple first 
derivative operator, equation [99] becomes 

 
xeff

dx

df    [100] 

We say that ex is the eigenfunction of the operator d/dx.  We can define a generalized 
eigenfunction problem by the following equation. 

 Lf(x) = p(x)f(x) [101] 

Here p(x) is called the weight function.  We see that the Sturm-Liouville problem is an 
eigenfunction problem of with the form of equation [101]; the definition of the operator for this 
problem can be found by examining equation [97]. 

 )()(
2

2

xq
dx

d
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d
L   [102] 

For functions, such as those in the solutions to the Sturm-Liouville problem, the inner product is 
defined as follows. 

   
b

a

jiji dxxpxfxfff )()()(, *
 [103] 

In this definition, the function px), which appears in the Sturm-Liouville problem is called the 
weighting function.  In many cases, p(x) =1 and is not considered in the definition of the inner 
product of functions.  For the Sturm-Liouville problem, p(x) is defined to be always greater than 
zero. 

The Strum-Liouville operator is one of a class of operators known as Hermetian or self-adjoint 
operators.  The linear operator, L, has an adjoint operator, L*, which is also linear, defined by the 
following inner product equation.  Here fi and fj are functions on which the operators L and L* act. 

 )*,(),( jiji fLffLf   [104] 

It is possible to have an operator that is self-adjoint or Hermetian operator; that is an operator for 
which L* = L.  We can show that the operator in the Sturm-Liouville equation, as defined in 
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equation [102], satisfies the definition of a self-adjoint using the inner-product definition in 
equation [103].  For a self-adjoint operator, equation [104] tells us that (Lfi,fj) = (fi,Lfj). 
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We now state two important results for Hermetian (or self-adjoint) operators in general and for the 
Sturm-Liouville operator in particular: 

1. The eigenvalues of any self-adjoint or Hermetian operator are real. 

2. The eigenfunctions of any self-adjoint or Hermetian operator defined over a region a  x  
b form an orthogonal set over that region. 

3. The eigenfunctions form a complete set if the vector space has a fininte number of 
dimensions as in an n x n matrix. 

4. The Sturm-Liouville operator has a complete set of eigenfunctions over an infinite-
dimensional vector space. 

The notion of orthogonal functions is an extension of the notions of inner products and 
orthogonality for vectors.  For functions, the inner product is defined in terms of the integral in 

equation [103].  If we have a set of functions, fi(x) defined on an interval a  x  b, are orthogonal 
over that interval if the following relationship holds. 
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 [106] 

We can define a set of orthonormal functions by the following equation. 
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 [107] 

Any set of orthogonal functions gi(x) can be converted to a set of orthonormal functions fi(x) by 
dividing by the square root of the inner product, (gi,gi), which we can also write as the two norm, 
||gi||2.  If we understand that we are always using the two-norm, we can drop the subscript and 
write this more simply as ||gi||. 
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 [108] 

Eigenfunction expansions 

If we have a complete set of eigenfunctions in a region a  x  b we can expand any other 
function, f(x), in that region by the following equation. 
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We can derive a simple expression for the coefficients in this equation if the eigenfunctions are 

orthogonal.  If we multiply both sides of this equation by (x)yn(x) and integrate between x = a and 
x = b, we obtain the following result. 
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We can rewrite these integrals using the inner product notation. 
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Since the ym form an orthogonal set, the only nonzero term in the summation on the right is the 
one for which n = m.  All other inner products are zero because of orthgonality.  Thus we have a 
simple equation to solve for am after setting n = m everywhere in the equation. 
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 [112] 

If we have an orthonormal set, the denominator of the am equation is one. 

The most common eigenfunction expansions are the Fourier series of sines and cosines.  These 
functions are solutions of a Sturm Liouville differential equation defined by equations [97] and 

[98].  To see this we consider the differential equation d2y/dx2 + 2y defined over 0  x  1, with 

y(0) = 0 and y(1) = 0.  This is a Sturm-Liouville equation with r(x) = p(x) = 1 ,  = 2, and q(x) = 0.   
The boundary conditions satisfy equation [98] with k1 = ℓ1 = 1and k2 = ℓ2 = 0.  The set of functions 

ym = sin(mx) = sin(mx), where m is any integer, satisfied both the differential equation and the 
boundary conditions.  (You can show this by substitution into the differential equation.  You 
should be able to say why the cosine will not be a solution to this problem.) 

The solutions are orthogonal, but we cannot tell if they are orthonormal unless find the norm of a 
function.  This requires the following integral for the norm.  (Note that p(x) was equal to one in our 
problem definition so it does not appear in the inner product.)  The resulting integral is evaluated 
using integral tables for indefinite integral of sin2(ax). 

  
 

2

1

4

2sin

2

1
)(sin,

1

0

1

0

22









 

xmxm

m
dxxmyyy mmm




  [113] 

Thus, for this set of functions, the coefficients in an eigenfunction expansion are computed from 
the following modification of equation [112]. 
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For example, we can expand the simple function f(x) = c, a constant, using the following 
coefficients.  
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The term 1 – cos(m) = 0 if m is even and 2 if m is odd.  We can thus write the am coefficients for 
this expansion as follows. 
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In this case, our eigenfunction expansion in equation [109] becomes 

 









5,3,10

)sin(
4

)()(
mm

mm xm
m

c
xyacxf 


 [117] 

We see that we can divide by c and obtain the following expression. 
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The partial sums of this series for a small number of terms are shown in the figure below. 
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We see that, as we take additional terms, the series converges to the value of f(x) = 1, but there 
are continued oscillations about this point.  In addition, at the boundaries of x = 0 and x = 1, the 
series sum is zero. 

Bessel’s equation as a Sturm-Liouville problem and its eigenfunction expansions 

We can show that Bessel’s equation [36] is a Sturm-Liouville equation.  We multiply equation [36] 
by x2 and define a new variable, z = x/k such that dy/dz = (1/k)dy/dz and (1/k2)d2y/dz2.  We can 
the rewrite equation [36] in terms of z.  If we divide the result by z, we obtain. 
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However, since we started with an equation for y as a function of x in equation [36] and we have 
not changed this, we could formally write y = y(x) = y(kz) in equation [119] and below in equation 
[120].  Since zd2y/dz2 + dy/dz can be written4 as d[z dy/dz]/dz, we can reduce equation [119] to 
the Sturm Liouville form of equation [97] as follows. 
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 [120] 

                                                           
4 You can show that this is correct by applying the rule for differentiation of products to d[z dy/dz]/dz. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

S
e
ri

e
s
 s

u
m

x

Orthogonal Sine Series for f(x) = 1

1 term

2 terms

3 terms

5 terms

10 terms



Introduction to orthogonal eigenfunction expansions October 10, 2017 Page 29 

 

We see that Bessel’s equation has the following definitions of the functions r, q, and p, and the 

eigenvalue , in the Sturm-Liouville equation: r = z, q = -n2/z, p = z, and  = k2. 

If we consider the case of integer  = n over a region 0  z  R the general solution of Bessel’s 
equation, remembering that we now have y(kz) as our dependent variable, is a linear combination 
of Jn(kz) and Yn(kz).  However, Yn(kz) approaches infinity as z approaches zero.  Thus, Yn(kz) 
cannot be part of our general solution when we include z = 0.  If the boundary condition at z = R 
is y(kR) = 0, we must select k to satisfy this equation.  It turns out that there are an infinite 
number of values that we can select for which kR = 0.  There are known as the zeros of the 
Bessel function.  (See the plots of the Bessel function above that show the initial locations at 
which the first few Bessel functions are zero.) 

For convenience, we define mn and kmn as follows. 
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The values of mn, called the zeros of Jn, are the values of the argument of Jn for which Jn is zero. 

There are an infinite of values, mn, for which Jn(mn) = 0.  Note the two subscripts for mn; m is an 
eigenfunction-counting index that ranges from one to infinity.  Do not confuse this eigenfunction 
index with the index, n, for Jn.  The index for Jn is set by the appearance of n in the original 
differential equation.  Thus our set of eigenfunctions, for fixed n, will be Jn(k1nz), Jn(k2nz), Jn(k3nz), 
Jn(k4nz), etc. 

This set of functions, Jn(kmnz) is orthogonal, since it is a solution to a Sturm-Liouville problem.  
The orthogonality condition satisfied by these functions is defined from equation [106] with a 
weighting function, p(z) = z, as discussed in the paragraph following equation [120].  Applying 
equation [106] to this problem we have the interval from 0 to R (in place of a to b) and we have a 
real function so we do not have to consider the complex conjugate.  This gives the following 
orthogonality condition. 
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 We can apply the usual equation for an eigenfunction expansion from [109] to this set of Bessel 
functions. 
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If we multiply both sides of this equation by zJn(konz)dz and integrate from 0 to R we obtain the 
following result. 
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In the final step we use the orthogonality relationship which makes all terms in the sum, except 
for the term in which m = o, zero.  We can use an integral table to evaluate the normalization 
integral.5 
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Combining equations [123] and [124] and using m in place of o as the coefficient subscript gives 
the following result for the eigenfunction expansion coefficients. 
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Although this seems like an unlikely choice of eigenfunctions with which to expand an arbitrary 
f(x), we will see that such expansions become important in the consideration of partial differential 
equations in cylindrical geometries. 

Summary of these notes 

We have developed the background to solve the Sturm-Liouville problem from several general 
cases by developing the tools of power series solutions and Frobenius method.  We showed the 
details of how one applies Frobenius method to the solution of Bessel’s equation.  The Kreyszig 
text covers other applications of this method. 

We discussed the Sturm-Liouville problem.  We noted that this problem was defined by the 
differential equation and boundary conditions in equations [97] and [98] that are copied below. 
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In the boundary conditions below, at least one of the two constants k1 and k2 is not zero.  
Similarly, at least one of the two constants ℓ1 and ℓ2 is not zero.  It is also possible to have 
periodic boundary conditions.  These are discussed by Kreyszig. 
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We noted that the Sturm-Liouville problem was an example of a Hermetian or self-adjoint 
operator.  This operator for functions had properties similar to a Hermetian matrix, which could 
also be regarded as a Hermetian operator.  We listed the following important results for 
Hermetian (or self-adjoint) operators in general and for the Sturm-Liouville operator in particular: 

                                                           
5 The general form of this integral, which is found by integration by parts followed by substitution of Bessel’s 
equation, is shown below. 
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1. The eigenvalues of any self-adjoint or Hermetian operator are real. 

2. The eigenfunctions of any self-adjoint or Hermetian operator defined over a region a  x  
b form an orthogonal set over that region. 

3. The eigenfunctions form a complete set if the vector space has a finite number of 
dimensions as in an n x n matrix. 

4. The Sturm-Liouville operator has a complete set of eigenfunctions over an infinite-
dimensional vector space. 

For functions, the inner product is defined in terms of the integral in equation [103].  This 
definition includes a weight function, p(x), which may be 1.  The orthogonality condition for 
functions was given in equation [106], which is copied below. 
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If we had an orthonormal set of functions, then the value of ai in the previous equation would be 
one. 

Because the eigenfunctions of the Sturm-Liouville problem form a complete orthogonal set, we 
can expand any function in the region in which the Sturm-Liouville problem is defined in terms of 
these eigenfunctions.  Equation [109] gives this general eigenfunction expansion by the following 

equation 
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below. 
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Appendix 

The various sections in this appendix contain background material on the topics covered in these 
notes. 

Appendix A – Power Series (Taylor Series) 

Power series or Taylor series are important tools both in theoretical analysis and in numerical 
analysis.  Recall that the Taylor series for a function of one variable, f(x), expanded about some 
point, x = a, is given by the infinite series, 

 ....)-(
!3

1
)-(

!2

1
)()()( 3

3

3
2

2

2





ax
dx

fd
ax

dx

fd
ax

dx

df
afxf

axaxax

 [A-1] 

The “x = a” subscript on the derivatives reinforces the fact that these derivatives are evaluated at 
the expansion point, x = a.  We can write the infinite series using a summation notation as 
follows: 
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In the equation above, we use the definitions of 0! = 1! = 1 and the definition of the zeroth 
derivative as the function itself.  I.e., d0f/dx0|x=a = f(a). 

If the series is truncated after some finite number of terms, say m terms, the omitted terms are 
called the remainder in mathematical analysis and the truncation error in numerical analysis.  
These omitted terms are also an infinite series.  This is illustrated below. 
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In this equation, the second sum represents the remainder or truncation error, εm, when only m 
terms are used in the partial sum for the series. 
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The theorem of the mean can be used to show that the infinite-series truncation error can be 
expressed in terms of the first term in the truncation error, that is 
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Here the subscript, “x = ξ”, on the derivative indicates that this derivative is no longer evaluated at 
the known point x = a, but is to be evaluated at x = ξ, an unknown point between x and a.  Thus, 
the price we pay for reducing the infinite series for the truncation error to a single term is that we 
lose the certainty about the point where the derivative is evaluated.  In principle, this would allow 
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us to compute a bound on the error by finding the value of ξ, between x and a, that made the 
error computed by equation [A-5] a maximum.  In practice, we do not usually know the exact 
functional form, f(x), let alone its (m+1)th derivative.  The main result provided by equation [A-5] 
for use in numerical analysis is that the remainder (or truncation error) depends on the step size, 
x – a, raised to the power m+1, where m is the number of terms in the partial sum. 

In the above discussion, we have not considered whether the series will actually represent the 

function.  A series is said to be convergent in a certain region, a  R, called the convergence 
interval, if we can find a certain number of terms, m, such that the remainder is less than any 

positive value of a small quantity .  The half-width of the region, R, is called the radius of 
convergence.  A real function, f(x), is called analytic, at a point x = a, if it can be represented by 
a power series in x – a, with a radius of convergence, R > 0. 

For simplicity, we can represent the coefficient in a Taylor series as a single coefficient, bn.  This 
definition and the resulting form for the power series are shown below. 
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We have the following results for operations on power series.  Consider two series, 
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The product of the two series requires a double summation. 
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We can differentiate a series term by term. 
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Appendix B – Factorials 

In the discussion above, we have introduced the concept of the factorial of a number.  This is 
defined as follows. 

)1)(2)(3()2)(1(!  nnnn  

From this definition, we can see that 2! = (2)(1) = 2; 3! = (3)(2)(1) = 6; 4! = (4)(3)(2)(1) = 24.  We 
see that higher factorials can be computed in terms of smaller factorials.  The examples above 
show that 4! = 4(3!) and 3! = 3(2!).  In general, we can write that 
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From this definition, we can see what the values for 1! and 0! are. 
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We also notice that when we have ratios of similar factorials we can reduce them as follows. 
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Appendix C – Gamma Functions 

The gamma function, (x) is defined by the following integral. 
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In this definition, t is a dummy variable of integration and the argument of the gamma function, x, 
appears only in the term tx-1.  The gamma function can be shown to be a generalization of 

factorials.  To do this we use equation [C-1] to evaluate (x+1).  To do this, we simply replace x 
by x + 1 everywhere in that equation and integrate by parts to obtain 
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If we restrict the value of x to be greater than zero, the term e-ttx vanishes at both the upper and 
lower limit.  (At the upper limit, we have to apply l’Hopital’s rule to get this result.)  The d(tx) term 
in the integral is simply xtx-1dt and when we perform this differentiation we see that the resulting 

integral is simply x(x). 
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The gamma function for an argument of 1 is particularly simple to compute. 

 1)10()1(
0

00

11 













ttt edtedtte  [C-4] 

We can apply equation [C-3] to this result to obtain the value of the gamma function for 2, 3, and 
4 as follows. 
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We see that the general result of equation [C-5] is 
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We can apply equation [C-3] and the result that (1) = 1 to compute (0). 
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Extending this relationship to negative integers tells us that the value of the gamma function for 
negative integers is infinite.  However, the value of the gamma function for and noninteger 
number, including negative ones, may be found from equation [C-3], once the values of the 
gamma function are known in the interval between zero and one.  Numerical methods are 
generally required to find these noninteger values of the gamma function.  One exception to this 
is the value of the gamma function of one-half that can be found by contour integration in the 
complex plane.  The result of such integration is 
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Note that we can use equation [C-3] to get other values of the gamma function such as the 
following. 
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